Malaysian Independent Chinese Secondary Schools

Senior Middle Level Advanced Mathematics Curriculum Standards

Compiled by:

Unified Curriculum Committee of Malaysian Independent Chinese Secondary School Working Committee Oct 2023

Contents

1. Preface	1
2. Aims	1
3. Core Competencies	2
4. Fundamental Principles	8
5. Curriculum Objectives	9
6. Curriculum Design	11
7. Curriculum Content	12
8. Pedagogical Suggestions	28
9. Assessment Suggestions	30
10. Implementation Highlights	36
11. Appendices	
Appendix 1: Cognitive, Affective and Psychomotor Domains	39
Appendix 2: Template of Perfomance Standards	39

1. Preface

In 2018, the motto "Enjoy teaching, love learning—empower children to attain achievement" was raised as the education reform vision in the MICSS Education Blueprint; it literally translates independent Chinese secondary schools are paradises where teachers enjoy teaching and students love learning. Each and every student who steps into any independent Chinese secondary school will grow healthily and learn actively. The MICSS education prepares students to find a foothold domestically and brave the world lying ahead as it helps them to achieve success in the future. Within this vision, the main objectives of the MICSS education reform are as follows: Every student is given the leeway to develop holistically and individually under the umbrella of moral education, intellectual education, physical education, social education and aesthetics education. They will eventually realise the importance of lifelong learning, constant self-improvement, risk-taking, innovation, ever-readiness, self-confidence and teamwork in life. In this way, they are able to attain personal happiness and are willing to strive for harmony, prosperity, development, freedom and equality for their family, ethnic group, community and country and contribute themselves successively. Aiming to implement and put the vision and objectives raised in the MICSS Education Blueprint in place, the Unified Curriculum Committee forwarded the MICSS Main Curriculum Standards (simply put as the Main Standards) to concretely push the reform and development of the MICSS Curriculum forward.

The ultimate goal of the MICSS curricular reform is the production of "lifelong learners" and thus it endeavours to improve subject curriculums to provide cross-subject and interdisciplinary learning opportunities. These are to nurture self-activated learning, collaborative learning and the ability to participate in society naturally. The curriculum standards of each subject are designed amenable to the principles and direction set forth in the *Main Standards* to pursue the command of basic notions, objectives, competencies, curricular planning and contents of the subjects, let alone pedagogical approaches and assessment recommendations. In terms of curricular practice, there will be allowances for flexibility and options targeting to encourage group learning, task-based learning, inquiry-based learning, etc.; while in the matter of the assessment for learning effectiveness, multiple assessments for the development of multiple intelligences are adapted. As such, the design and formulation of each and every subject must correspond to both the vision of the *MICSS Education Blueprint* and the recommendations of the *Main Standards* to break new ground for subject advancement.

2. Aims

MICSS education is a sustainable education industry; other than the dissemination of Chinese culture, it also ensures every student in Malaysian independent Chinese secondary schools develops holistically in terms of morality, intelligence, physical health, teamwork and aesthetics. Students are expected to sustain lifelong learning and to strive unremittingly for self-improvement as well as being inquiry-oriented, innovative, daring in response to unpredictable change, confident, and willing to work as a team. In this way, the students are capable of achieving their personal happiness and willing to strive relentlessly for the harmony, prosperity, development, freedom and equality of their family, ethnic group, community and country to contribute successively.¹

¹ Dong Zong. (2018). *Malaysian Independent Chinese Secondary Schools Education Blueprint* (p. 49). United Chinese School Committees' Association of Malaysia (Dong Zong).

2.1. Junior Middle Level Curriculum Objectives

- a. To build up students' foundation on morality, intelligence, physical health, teamwork and aesthetics and to develop their capabilities complying with their own personality in the balance based on these basics;
- b. To nurture and train students on the capabilities and habits of learning how to learn, read and think to prepare for self-directed learning/active learning;
- c. To ensure students reach the basic level in knowledge, capability and attitude so as to further unleash their potential for distinctive achievements;
- d. To build up students' proactiveness and positive values towards living and life; and
- e. To create an environment for students to know about the languages, cultures and religions, etc. of the ethnic groups in the country so as to lead students to respect the pluralistic culture, recognise the reality of the country thus opening up a global perspective.

2.2. Senior Middle Level Curriculum Objectives

- a. To suitably build up students' foundation on morality, intelligence, physical health, teamwork and aesthetics to get ready for their prospective, career, learning and living;
- b. To establish students' foundation on self-directed learning to further build up their capabilities on learning eagerness, independent thinking, critical thinking and innovation;
- c. To cultivate students with the will to seek excellence and be altruistic thus creating the prerequisites for greater happiness for oneself, community, country and humankind;
- d. To lead students to recognise themselves comprehensively and be confident and assured in the face of their society and era change;
- e. To nurture students' responsibility towards their own family, ethnic group, society and country and respect multiple cultures as well as broadening their global perspectives; and
- f. To create opportunities for students to partake proactively in various ethnic group activities, and ensure them to be able to interact and learn in cross-cultural environments.

3. Core Competencies

The *Main Curriculum Standards* is based on the six core competencies² proposed in the *MICSS Education Blueprint*, as well as three additional core competencies added to cater to curriculum development needs, forming a total of nine core competencies. Further explanation is given in the design of Junior Middle Level and Senior Middle Level curriculum development. Core competencies emphasise the holistic qualities of individuals and encompass knowledge, skills and attitudes.

² Dong Zong. (2018). *Malaysian Independent Chinese Secondary School Education Blueprint* (pp. 40-41). United Chinese School Committees' Association of Malaysia (Dong Zong).

Figure 1 Framework for MICSS Core Competencies

Figure 1 shows that MICSS curriculum development cultivates lifelong learners. The structure expanded into three aspirations that empower children to attain achievement, namely self-directed learning, communication and collaboration as well as societal participation. The outer ring of the core competency structure is presented in a colour spectrum, revealing the integration of nine competencies with the three aspirations. The misalignment of the inner and outer circle further clarifies that the implementation of each competency incorporates the three major aspirations. Based on the principle of integration and feasibility, the Main Curriculum Standards promote each competency through three aspirations. Table 1 presents the core competencies and their definitions.

Curriculum Principle	Core Competencies	Definitions	Junior Middle Level	Senior Middle Level	Student Outcome
A. Self-Directed Learning	A1. Physical-Mental Wellbeing and Aesthetic Development	She/He possesses the capability to take care of personal mental and spiritual health and knows how to appreciate the best parts in life, and can reflect on her/his experience in learning and growing thus adjusting stages of pursuits in career development. This way, it not only benefits mental and spiritual growth but also exerts proactiveness in creating happiness for her/his own life.	She/He is well informed of personal mental and spiritual health, knows the uniqueness of aesthetics and can discover personal value in living to exert richness and aesthetics thus experiencing the meaning of life proactively.	She/He possesses the competency and is informed of the approaches to promote her/his physical and mental wellbeing; she/he knows how to appreciate the true goodness of people and entities, affirm the personal value and realise professional pursuits, including how to enrich life by applying aesthetics in daily life, and relentlessly seek self-improvement to transcend herself/himself thus to create a happy personal life.	One who cares about herself/himself
	A2. Knowledge and Technology Applications	She/He possesses literacy and numeracy and living skills as well as acquiring the three languages, core subjects like Mathematics and History, etc. She/He knows and learns knowledge of other domains, leverages Information Technology to communicate, interact and express for comprehensive development; meanwhile, she/he applies these in real life for better learning outcomes thus resolving difficulties in learning.	She/He possesses the fundamentals of knowledge and various symbols and commands the application of Information Technology to sense problems in daily life and is able to communicate, experience and practice in such circumstances.	She/He possesses the ability to make use of various symbols to express and is literate in Information Technology and can focus on and deepen the particular field of knowledge to exchange experience, and express thoughts and values in innovative problem-solving.	One who is knowledgeable
	A3. Innovative Thinking and Problem Solving	She/He possesses inquisitive, critical and inferential capabilities and can use her/his creativity to monitor her/his self-directed learning skills to tackle or solve problems in living and life thus deciding on a response to societal changes.	She/He possesses the capabilities of self- directed learning, inquiry-based learning, critical and inferential and innovative higher-order thinking thus using appropriate strategies to resolve and tackle daily life problems and issues.	She/He can consolidate inquiry-based learning, critical thinking and innovative higher-order thinking, and can practise active learning as well as expressing her/his creativity to further inquire into unknown realms and solve all sorts of issues and challenges in the face of daily life on this basis.	One who can solve problems

Table 1 MICSS Core Competencies and Definitions

Curriculum Principle	Core Competencies	Definitions	Junior Middle Level	Senior Middle Level	Student Outcome
B. Communication and Collaboration	B1. Proactive Attitude and Positive Values	She/He possesses values like respect, voluntary accountability, studious and positive values to confront challenges generated in daily life and the learning process. She/ He also recognises the importance of fulfilling social responsibility and has the courage to make a clear and appropriate judgement when confronted with dilemmas and can learn to face discrepancies as well managing conflicts.	She/He inquires about the personal and environmental values and senses the discrepancies between them. She/He learns to live with discrepancies and build up respect, responsibility, studious attitudes and positive value in life.	She/He deepens her/his attitudes and values thus to respect, care and appreciate others' discrepancies, and can fumble on the differences of values between oneself and the existence and learn to tackle confrontation, affirm and practise positive value and competency; she/he braves to make a proper judgment in the face of difficulties and challenges.	One who cares about others
	B2. Leadership and Teamwork	She/He possesses the capability to lead and can effectively work and build up an interactive relationships with others thus developing teamwork competencies of communication, negotiation and service.	She/He possesses the basic self-directed capability and good habits and is happy to interact thus building up good collaborative relationships and can complete tasks through collaboration.	She/He possesses compassion, personal judgment, gregarious capability and attitude; meanwhile, she/he develops communicative co-operation and teamwork competency; she/he can get along well with others collaboratively, and is able to complete the assignment well with advanced planning.	One who knows the importance of teamwork
	B3. Languages and Communication	She/He possesses the background knowledge of culture, tradition and religion and can make use of Chinese learned, together with the command of Bahasa Melayu towards patriotism and love for community and is versed in English for international linkage. When it permits, she/he will master more languages and use these languages in different situations for optimal effect.	She/He possesses the background knowledge of culture, tradition, religion and can make use of Chinese learned, together with the command of both Bahasa Melayu and English to make friends from different ethnic groups thus enhancing the four skills in language learning and eventually realise the importance of language as a medium of cultural dissemination and communication.	She/He is well versed in Chinese and possesses appreciative competency to enrich her/his knowledge of local and exotic cultures, lifestyles and religions through the learning of Bahasa Melayu and English. If it permits, she/he will equip herself/himself with more additional languages in the face of academic pursuits and professional development.	One who is skillful in communication

Curriculum	Core	Definitions	Junior Middle Level	Senior Middle Level	Student
Principle	Competencies				Outcome
C. Social Participation	C1. Ethics and Humanitarianism	She/He practices good morality and can manage her/his own behaviours and understand that it is a social responsibility to promote personal competencies. She/He can appreciate, is compassionate and respect others for their freedom of speech.	She/he practices well on good morality and can suitably reflect her/his own behaviours; she/he can likewise sustain and modify her/his initiated voluntary proactiveness and is willing to listen to different views, ways of expression and respect others' decisions.	She/He possesses the correct attitude towards ethical and public issues and presents herself/himself as someone who treats others generously and is severe with herself/himself and expresses her/his care towards society through rational expression and care and learns to judge public issues from different aspects and angles.	One who is open-minded
	C2. Patriotism and Multicultural Awareness	She/He possesses the cultural identity of her/his own culture, understands and respects others' culture thus merging herself/himself in a multicultural environment, recognise the history of her/his country and realise the multiplicity of the country and is proud of herself/himself as a Malaysian who has civic awareness and responsibility safeguarding the harmony of the country for national unity and integration.	She/He is well versed in her/his own culture, understands and accepts the culture of other ethnic groups; she/he respects discrepancies, cares about national issues, and is proactive in community construction and is ready to be of service to others.	She/He identifies her/his cultural identity, respects and appreciates the discrepancies between cultures; she/he has civil awareness and knows her/his responsibilities; she/he safeguards national harmony and promotes the spirit of national consolidation and is proactive in the development of her/his community and country to confer benefits on society.	A patriot and one who loves her/his community
	C3. Global Perspectives and Sustainable Development	She/he has the competency of caring for world issues and international relationships and also cares about the environment, economics and social problems. She/He walks her/his talk in the protection of the environment, her/his and others' living mode and sustains the concept of sustainable development and cherishes resources on earth.	She/He is informed of global issues and international relationships and can express herself/himself on environmental, economic and social problems. She/He cherishes the living of resources appreciation and cares about the environment and social justice-related issues.	She/He possesses the ability to express her/his own views on global issues and international relationships and can debate on the environment, economy and social problems; She/He can keep her/his word and not bring harm to the environment, people and lifestyle; she/he is willing to partake charity campaigns such as environmental protection and social justice.	One who knows the importance of sustainable development

Figure 2

The Relation of Vision, Core Competencies and Curriculum Objectives

4. Fundamental Principles

The mission and objective of "the Main Standard" are to visualize the vision of "Enjoy teaching, love learning - empower children to attain achievement", implement the overall objectives of MICSS Education Blueprint, and encourage the development of well round and personal characters of students. Mathematics is a language, a subject wherein it applies in a wide range and is also closely related to humanities. Therefore, the mathematics curriculum standards with the curricula contents closely attach to the characteristics of the visions, are responsive to the visions in "General Outline", offer contextual learning opportunities, and cultivate students informatics and communications technology(ICT) competencies. The concepts are described below:

1. Mathematics is a language

The origin of mathematics is related to calculation, measurement, trading, etc. It is refined from natural languages and exemplifies the idea of simplification. Thus, mathematics is a key enabler to our civilization.

Numbers, shapes, spaces, and their interrelation in daily life, can be described more simply and concisely, via text and symbols. The succinctness of mathematical language enables complicated phenomena and relationships to be described in simple yet concise formulae or theories. The accuracy of mathematical language compensates for the inadequacy of natural language moderately. Because of this, mathematics teaching should be conducted by mathematical operation and explanation of examples before teaching abstract concepts.

2. Mathematics applies in a wide range

Mathematics is a field of study that investigates topics such as numbers, space, structure, change, and information. Mathematics is used in daily life, exploration of natural phenomena, interpretation of social phenomena, analysis of fiscal problems, development of sciences, etc. It is a fundamental tool in handling or analyzing problems in the mentioned fields. There is a variety of examples of applying mathematics, such as ratio applied in currency exchange; factorization of large integers in encryption system; numeral system in ASCII code table; the principle of indices in the calculation of compound interest; logarithm in the calculation of half-life of radioactive elements or pH values of solutions; trigonometry in measuring calculation; trigonometric functions are conducive in studies of waves; statistics in commercial investments, actuarial science, biology, and social sciences; calculus in applied economics, etc.

3. Mathematics contains rich humanistic spirits

Mathematics is one of the integral parts of human culture. Rigorous mathematical reasoning or statement of definition and theorem, diversity of problem-solving steps, and well-founded mathematical proofs cultivate not only a disciplined mindset and creativeness, yet pursuit of truth, objective and fair, factual philosophy of life. Mathematical beauty displayed in rational, symbolic, structural ,and symmetrical aesthetics parts enhances students' cognition and experience of aesthetic values. Biography and contribution of mathematicians, the history of mathematics and the culture of mathematics, expose students to the background and development of mathematical knowledge, making the wonder of mathematics accessible to them. Students will realize that the discoveries in mathematics are the outcomes of determination and devotion to mathematics, cultivating their rational mindset and positive attitude imperceptibly.

4. Mathematics teaching should provide contextual teaching

Mathematics teaching should start with a class opener based on real life, the history of mathematics or social issues, followed by learning tasks, with the guidance of teachers to solve problems via exploration, group discuss and collaboration, in order to help students in conceptualizing knowledge of mathematical concepts and developing required skills. Through sharing problem-solving strategies and listening to others' thoughts, students are practicing self-reflection learning, enhancing cognitive and comprehensive learning of the content. Furthermore, this enables students to sense the ubiquity of mathematics in our life and appreciate the wonder and function of mathematics. This teaching method integrates different levels of students with a diversity of learning opportunities.

5. Mathematics teaching cultivates students' ICT competencies

Informatic and communications technology tools, including computers and software, are playing an auxiliary role in mathematics teaching in 21-century. Incorporating of ICT usage into Mathematics Curriculum enables learning content to correspond reasonably with our everyday lives and social context. After students manage to master calculation, in order to a avert repetition of calculation rendering lack of motivation, students should be allowed to use computer or ICT tools appropriately to implement complicated calculations of numbers, statistics, exponents, logarithms, and trigonometric ratios. Nevertheless, computational errors may occur, and students should be reminded so that students understand the occasion and limitations toward using ICT tools in order to promote proper attitudes in ICT usage.Furthermore, integrating computer software into classroom teaching will foster the design and implementation of exploring and monitoring experiments, group discussion and similar pedagogies, thereby promoting growth of intellectual and innovation consciousness.

5. Curriculum Objectives

Advanced Mathematics is competency oriented, emphasizing the development of knowledge, competencies, and attitude for adaptation to current and future life. It comprises three concepts: "self-directed learning", "communication and collaborative", and "societal participation" under the umbrella of the vision "Empower Children to Attain Achievement". Table 2 indicates correspondence table mapping curricular objectives and core competencies.

			Curriculum Objectives
Core Competencies		After completing the Advanced Mathematics programme students are able to:	
A Self-Directed Learning	A1 Physical-Mental Wellbeing and Aesthetic Development	CO1	Possess the competency to promote her/his physical and mental competencies; know self-directed learning; know how to appreciate the true goodness and beauty of people and entities; understand that mathematics has influenced arts.

Table 2: Alignment of MICSS Core Competencies and Curriculum Objectives

	A2 Knowledge and Technology Applications A3 Innovative	CO2 CO3	Possess the ability to apply mathematical knowledge and language in real life and leverage Information Technology to resolve and tackle problems, while also knowing the limitations of scientific tools. Possess the ability to transform daily life situations into mathematical context, while
	Thinking and Problems Solving		she/he can solve all sorts of issues and challenges by choosing and implementing flexible tactics.
	B1 Proactive Attitude and Positive Value	CO4	Deepen her/his attitudes and consolidate her/his confidence in mathematical learning; conduct self-directed learning; be brave to make proper solutions in the face of difficulties and challenges.
B Communication and Collaboration	B2 Leardership and Teamwork	CO5	Possess empathy, gregarious capability, and attitude; can get along with others collaboratively and develop communicative co-operation and teamwork competency via mathematical learning activities; meanwhile, complete tasks well with advanced planning.
	B3 Language and Communication	CO6	Possess the ability to master mathematics knowledge in Chinese and articulate in mathematical language; meanwhile, learning mathematical terms in Bahasa Melayu and English in the face of academic pursuits and professional development.
	C1 Ethical and Humanitariansim	CO7	Possess the ability to promote her/his critical and reflective thinking; learn to express concerns to and judge public issues from different aspects and angles.
C Societal Participation	C2 Patriotism and Multicultural	CO8	Possess the ability to analyze national and society issues, have the competency of caring for these issues, and thus become a rational citizen. In addition, understand the context of mathematical history and appreciate mathematical culture from various regions.
	C3 Global Perspectives and Sustainable Development	CO9	Understand the future of mathematical, scientific, and technological development; concern herself/himself with societal and sustainable environmental development issues.

6. Curriculum Design

6.1 Design outline

The essence of mathematics is hierarchical: from elementary counting to an advanced abstract mathematical concepts. The formation of mathematical concepts requires a series of deepening and expanding progress, from simple to sophisticated, concrete to abstract. In other words, higher-level mathematical concepts and competencies are based on elementary concepts and competencies, thus learning mathematics proceeds by small incremental advances.

Mathematics (Senior Level, or S.L.)for senior secondary schools is based on Mathematics (Junior Level, or J.L.), extends to algebra, geometry, statistics and probability, three domains of the subject, and eventually integrates differentiation and integration into it. The spiraling nature of the curricular arrangement is conducive to embedding learning points from various fields. The learning points will become more intensified and extended with level. Senior One mathematics focuses on geometry, algebra and subsequent advanced trigonometry; Senior Two on advanced algebra, geometry, statistics and probability; Senior Three introduces calculus, and subsequent integration of calculus with algebra, geometry, trigonometry, statistics and probability. Mathematics(S.L.) is taught in the art stream, commerce stream, art and commerce stream, and vocational stream. Thus, apart from demonstrating mathematical logic, Mathematics(S.L.) is also partially based on applied mathematics.

Advanced Mathematics is taught in the science stream. Thus, it comprises Mathematics(S.L.) syllabus and extension of differential equations, mathematical methods, conic sections, complex numbers, and vector space which are more abstract, laying the foundation of applied mathematics and theoretical mathematics.

6.2 Period allocation

There are 40 weeks of teaching in an academic year for Senior One, Senior Two, and Senior Three. Senior One and Senior Two 7 periods every week, while Senior Three 5 periods every week. Each period lasts for 40 minutes.

Catetgory	Discipline	Subject	Senior Middle One Class Period per week	Senior Middle Two Class Period per week	Senior Middle Three Class Period per week	Total period per week
Dong Zong Curriculum	Science	Advanced Mathematics	7	7	5	7 x 2 x 40 + 5 x 40 = 760 periods

Table 3: Advanced Mathematics Curriculum Timetable

6.3 Subject Structure

Senior level mathematics is divided into Mathematics(S.L.) and Advanced Mathematics to meet the learning requirements of arts, commerce, technical and science streams.

Mathematics(S.L.) is based on Mathematics(J.L.), and it is coherent. Mathematics(S.L.) is a subset of Advanced Mathematics; thus all senior students should commit themselves to learning it.

7. Curriculum Content

7.1 Content Standards

Table 4

Content Standards

Content Standards		
Theme	Item	Details
1. The Cartesian	1.1 Formula of Divisor	1.1.1. Meaning of fixed ratio point of
Coordinate	of Line Segment	divisor
System and		1.1.2. Meaning of midpoint formula
Linear		1.1.3. Meaning of divisor ratio formula
Equations	1.2 Area of Triangles	1.2.1. Finding the area of triangle and
	and Poligons	polygon by vertices
	1.3 Gradient of Straight	1.3.1. Definition of angle of inclination and
	Lines	slope
		1.3.2. Linear equations (point-slope form,
		standard form) under given
		conditions.
		1.3.3. Conditions of two parallel and
		perpendicular lines
		1.3.4. Relationship between two straight
		lines (parallel, perpendicular,
		coincident, intersecting)
	1.4. Distance Between	1.4.1. Definition of distance between point
	Point and Line	and line
		1.4.2. Formula of finding distance between
		point and line
2. Quadratic	2.1. Discussion on	2.1.1. Nature of quadratic equations
Equations	Quadratic Equations	2.1.2. The discriminant of quadratic
		equations

		2.1.3. The relationship of roots and
		coefficients of quadratic equations
	2.2. Graphs and the Extreme Values of	2.2.1. Quadratic functions in $a(x-p)^2 + q$
	Quadratic Equation	2.2.2. Graph, direction of the opening of parabola, axis of symmetry,
		maximum or minimum value of
		quadratic functions
		2.2.3. Meaning of roots of quadratic
		equations
		2.2.4. Discriminant for finding number of
		intersection points
		2.2.5. Finding extreme value in quadratic
		functions $y = a(x-p)^2 + q$
		2.2.6. Transformation of graphs
		$f(x) = ax^2 + bx + c$
3. Polynomials	3.1. Polynomials	3.1.1. Degree, coefficient, leading
		coefficient, constant term of
		polynomials
		3.1.2. Arithmetic and synthetic division of
		polynomials, meaning of factorization
		and multiplication in polynomials
	3.2. Remainder Theorem and Factor	3.2.1. Remainder Theorem and Factor Theorem
	Theorem	3.2.2. Finding remainder or factor from
		given conditions
		3.2.3. Finding polynomial from given remainder or factor
	3.3. Factorization of	3.3.1. Factorization of polynomial
	Polynomials	3.3.2. Factorization by Factor Theorem
	3.4. Solve Quadratic	3.4.1. Higher-order equations in one
	Equations with	variable
	Higher Order	3.4.2. Solving specific quadratic equations
		with higher order by substitution
4. Irrational	4.1 Radical Equations	4.1.1. Meaning and nature of radical
Expression		equation
		4.1.2. Simplifying radical with different
		Indices
	4.2. Fractional	4.2.1. Definition of fractional exponent
	Exponents	4.2.2. Arithmetic operations in power
		4.2.3. Simplifying radical expressions with
		fractions

		4.2.4. Fulfilling requirements for simplest
		radical form
		4.2.5. Simplifying radicals to the simplest
		form
	4.3. Arithmetic of	4.3.1. Arithmetic of radicals
	Radicals	
	Kaulcais	4.3.2. Multiplying and dividing radicals by
	1.4 Detionalizing	fractional exponents
	4.4. Rationalizing Fractions and	4.4.1. Meaning of rationalize fractions and denominators
	Denominators	4.4.2. Rationalizing the denominators in the
		form of $\sqrt{a} \pm \sqrt{b}$
5. Functions	5.1. Functions	5.1.1. Definition of correspondence and
		mapping
		5.1.2. Definition of function, independent
		variable, dependent variable
		5.1.3. Function notations (piecewise
		function, analytic method, table
		method, graphical method)
	5.2. Domain and Range	5.2.1. Meaning of domain and range
	of Functions	5.2.2. Domain and range of functions
		5.2.3. Concept and notation of interval,
		conversion between sets and interval
		notations
	5.3. Image of Functions	5.3.1. Meaning of graph of function
	U	5.3.2. Graph and nature of elementary
		functions (constant function, linear
		function, quadratic function, absolute
		value function, reciprocal function)
		5.3.3. Graph of a function and its
		transformation
	5.4.1 Composite	5.4.1. Meaning of composite function
	Functions	5.4.2. Composite functions and their
		calculations
	5.5. Bijection Functions	5.5.1. Meaning of one-to-one function,
		surjection function, bijection function
		5.5.2. Determination of one-to-one
		functions, surjection functions,
		bijection functions
	5.6. Inverse Functions	5.6.1. Meaning of inverse function, and its
		_
		domain and range
		5.6.2. Finding and arithmetic of inverse
		functions

	7	5.6.3. Graphic meaning of inverse functions		
6. Inequalities	6.1. Inequalities and	6.1.1. Concept of inequality		
	Their Nature	6.1.2. Nature of inequality		
		6.1.3. Comparison of two inequalities		
	6.2. Quadratic	6.2.1. Quadratic inequalities		
	Inequalities	6.2.2. System of quadratic inequalities		
	6.3. Linear Inequalities	6.3.1. Solving linear inequalities by		
	in Two Variables	graphical method		
		6.3.2. Solving system of linear inequalities		
		in two variables by graphical method		
		6.3.3. Graphical meaning of linear		
		inequality		
	6.4. Higher Order	6.4.1. Higher order inequalities		
	Inequalities and	6.4.2. Fraction inequalities		
	Rational	l		
	Inequalities			
	6.5. Inequalities With Absolute Value	6.5.1. Inequalities with absolute value		
	6.6. Linear	6.6.1. Meaning of linear programming		
	Programming	6.6.2. Problems solving of linear		
		programming		
7. Logic	7.1. Proposition	7.1.1. Meaning of proposition, rejection,		
0		"Or", and "And"		
		7.1.2. Inferencing		
	7.2. Condition	7.2.1. Meaning of necessity condition,		
	Proposition	sufficiency condition, necessity and		
		sufficiency condition		
	7.3. All and Exist	7.3.1. Meaning of "All" and "Exist"		
		7.3.2. Simple proof based on given		
		conditions		
8. Degree and	8.1. Angles	8.1.1. Arbitrary angles		
Radian		8.1.2. Meaning of degree and radian		
		8.1.3. Conversion between degree and		
		radian		
	8.2. Arc Length and	8.2.1. Arc length formula and sector area		
	Sector Area	formula		
		8.2.2. Problems solving of arc length and		
		sector area		
9. Trigonometric	9.1. Trigonometric	9.1.1. Definition of quadrant, acute angle,		
Functions of	Functions of	trigonometric functions of arbitrary		
Arbitrary	Arbitrary Angles	angles		
Angles		9.1.2. Negative and positive values of		
-		trigonometric functions of arbitrary		

		angles
		9.1.3. Problems solving with trigonometric
		functions of special angles
	9.2. Induced Formulas	9.2.1. Without using calculator, values of
	of Trigonometric Functions	trigonometric functions of $360^\circ \pm \theta$,
		$180^{\circ} \pm \theta$, $-\theta$, $90^{\circ} \pm \theta$, $270^{\circ} \pm \theta$
		and relationships with values of trigonometric functions of θ
	9.3. Graph of	9.3.1 Graph of trigonometric functions and
	Trigonometric	their nature (domains, ranges, and
	Functions	periods)
		9.3.2. Graph variations of trigonometric
		functions
	9.4. Inverse	9.4.1. Definition and range of inverse
	Trigonometric	trigonometric functions
	Functions	9.4.2. Graphs of inverse trigonometric
		functions and its nature
10. Application of	10.1. Law of Sine	10.1.1. Law of Sine
Trigonometry		10.1.2. The circumradius of a cyclic
		polygon
	10.2. The Law of	10.2.1. The Law of Cosine
	Cosine	
	10.3. Formulas for Area	10.3.1. Formulas for Area of Triangle (Area
	of Triangle	$=\frac{1}{2}ab\sin C$, Heron's Formula)
	10.4. Measurement	10.4.1. Definition of angle of elevation,
	Problems	angle of depression and bearing
		10.4.2. Problems solving with triangle
		measurements in geometric plane
11.	11.1. Fundamental	11.1.1 Reciprocal relation, quotient relation
Trigonometric	trigonometric	and square relation in trigonometric
Identities and	identities of	functions of coterminal angles
Trigonometric	trigonometric	11.1.2. Proof of Trigonometric Identity
Equations	functions	
	11.2.1. Sum and	11.2.1. Simplifying trigonometric functions
	Difference of Two	(sum and difference of two angles -
	Angles in	sine, cosine, tangent) and proof of
	Trigonometric Functions	trigonometric identities
	runctions	11.2.2. Simplifying double angle formulas
		of trigonometric functions and proof of trigonometric identities
	11.3 Trigonometric	
	11.3. Trigonometric	11.3.1. Trigonometric equations

	Equations	(conditional solution)
	-1	11.3.2. Trigonometric equations (general
		solution)
12. Indices and	12.1. Exponential	12.1.1. Nature and arithmetic of
Logarithms	Functions	exponential functions
		12.1.2. Graph of exponential functions and
		nature of the graphs
	12.2. Logarithmic	12.2.1. Definition, nature and arithmetic of
	Functions	logarithmic functions
		12.2.2. Formula of changing bases for
		logarithm
		12.2.3. Graph of logarithmic functions and
		its nature
	12.3. Exponential and	12.3.1. Exponential equations
	Logarithmic	12.3.2. Logarithmic equations
	Equations	
13. Sequence and	13.1. Sequences and	13.1.1. Definition of terms and number of
Series	Series	terms
		13.1.2. Applying symbol \sum to represent
		series
	13.2. Arithmetic	13.2.1. First term and common difference of
	Sequences and	arithmetic sequences
	Arithmetic Series	13.2.2. Formulas for general term of
		arithmetic sequences
		13.2.3. Definition of arithmetic mean
		13.2.4. Summation of arithmetic series
	13.3. Geometric	13.3.1. First term and common ratio of
	Sequences and	geometric sequences
	Geometric Series	13.3.2. Formulas for general term of
		geometric sequences
		13.3.3. Definition of geometric mean
		13.3.4. Summation of the geometric series
		13.3.5. Definition of infinite series
		13.3.6. Formula for summation of infinite
		series
	13.4. Annuity and	13.4.1. Meaning of compound interest and
	Compound	annuity
	Interest	13.4.2. Problems solving of compound
		interest and annuity
	13.5. Summation of	13.5.1. Summation of Special Series
	Special Series	
14. Determinants	14.1. Determinants	14.1.1. Definition of first order, second
		order and third order of

		determinants
		14.1.2. Expansion of third order
		determinants
		14.1.3. Nature and value of determinants
		14.1.4. Finding determinants value by using
		cofactor expansion
	14.2. Nature of	14.2.1. Nature of determinants
	Determinants	14.2.1. Wature of determinants
	14.3. Cramer's rule	14.3.1. Cramer's rule
15. Matrices	15.1. Matrices	15.1.1. Definition of matrix, equal matrix,
15. Wathees	15.1. Wathees	zero matrix, identity matrix, and
		transpose matrix
	15.2. Arithmetic of	15.2.1. Addition and subtraction of matrices
	Matrices	15.2.2. Scalar product of matrices
	Widthees	15.2.3. Multiplication of matrices
	15.3. Inverse Matrices	15.3.1. Definition of inverse matrices
	and their	15.3.2. Inverse of second order square
	Application	matrices and third order square
	Application	matrices
	15.4. Linear	15.4.1. Linear simultaneous equations
	Simultaneous	(inverse matrices, Gaussian
	Equations	elimination)
16. Circles	16.1. Formula of a	16.1.1. Definition of locus
	Circle	16.1.2. Finding standard form and general
		form of the circle from given
		conditions
		16.1.3. Finding centre of circle and radius
		from given formula of circle or
		other conditions
		16.1.4. The relationship between point and
		circle, shortest and longest distance
		between a point and a circle
	16.2. The Relationship	16.2.1. The positional relationship between
	Between Line and	line and circle
	Circle	16.2.2. Definition of tangent
	16.3. The Relationship	16.3.1. Definition of circumscribe, inscribe,
	of Distances	intercept, and separate of circles
	Between the	16.3.2. The positional relationship of
	Centres of Two	distances between two circles
	Circles	
17. Plane Vectors	17.1. Vectors	17.1.1. Definition of vector, zero vector,
		equal vector and inverse vector
		17.1.2. Vectors and scalars
		17.1.2. vectors and scalars

		17.1.3 Summation of vectors, triangle law
		of vector addition and parallelogram
		law of vector addition
		17.1.4. Multiplication of vectors
	17.2. Components of a	17.2.1. Definition of position vector and
	Vector	unit vector
		17.2.2. Magnitude of a vector
		17.2.3. Representation of position vector in
		coordinates system
		17.2.4. Coordinates form or unit vector to
		represent addition or subtraction of
		vectors
	17.3. Vector in	17.3.1. Meaning of Midpoint Theorem,
	Geometric Plane	Proportionality Theorem
		17.3.2. Problems solving of vectors
18. Solid	18.1. Angle between	18.1.1. The position of the angle formed by
Geometry	line and plane	a line and a plane
		18.1.2. The angle formed by a line and a
		plane
	18.2. Dihedral Angles	18.2.1. The position of the dihedral angle
		18.2.2. Dihedral angles
	18.3. Applications of	18.3.1. Problems solving of simple
	Simple Geometric	geometric solids
	Solids	
19. Permutation	19.1. Principle of	19.1.1. Meaning of Principle of Addition
and	Addition and	and Principle of Multiplication
Combination	Principle of	
	Multiplication	
	19.2. Permutation of	19.2.1. Formula of permutation and
	Distinct Elements	problems solving of permutation
		about linear permutation
		19.2.2. Repetition permutation of distinct
		elements
	19.3. Circular	19.3.1. Meaning of circular permutation
	Permutation of	19.3.2. Problem solvings of circular
	Distinct Elements	permutation (exclude non-distinct
		elements)
	19.4. Permutation of	19.4.1. Problem solvings of permutation
	Non-Distinct	about non-distinct elements
	Elements	
	19.5. Combination	19.5.1. Formula of combination
		19.5.2. Problems solving of combination
	19.6. Permutation and	19.6.1. Problems solving of permutation
	Combination	and combination
l	1	

20. Binomial	20.1. Binomial	20.1.1. Binomial Theorem with natural
Theorem	Theorem with Natural Number	number power
	Power	
	20.2. Binomial	20.2.1. Binomial Theorem with rational
	Theorem with	number power
	Rational Number	20.2.2. Binomial with rational number
	Power	power and Its Limit
21. Limits	21.1. Limit of Series	21.1.1. Meaning of limit of series and its
		calculation
	21.2. Limit of	21.2.1. Meaning of left limit, right limit and
	Functions	limit of function
		21.2.2. Existence of function limit, right
		limit of function and left limit of
		function
	21.3. Nature of	21.3.1. Nature of function limit
	Function Limit	
	21.4. Continuity of a	21.4.1. Definition and condition of
	Function	continuity of a function
		21.4.2. Continuity of a function
22.	22.1. Derivatives	22.1.1. Meaning of derivatives, using
Differentiation		definition of derivative to find
and its		derivatives
Application (I)		22.1.2. Relationship between
		differentiability and continuity
	22.2. Differentiation	22.2.1. Differentiation rules of addition,
	Rules	subtraction, multiplication and
		division of functions
		22.2.2. Derivative of power functions
	22.3. Chain Rule	22.3.1. Finding derivative of composite
	22.4. Uishar Dagras	functions by the chain rule
	22.4. Higher Degree Derivative	22.4.1. Higher degree derivative
	22.5. Tangents and	22.5.1. Tangent and normal to a curve at a
	Normals	point
	22.6. Increasing or	22.6.1. Meaning of monotonic
	Decreasing	22.6.2. Increasing or decreasing functions
	Functions	22.0.2. moreusing of decreusing functions
	22.7. Extrema	22.7.1. Global maximum value, global
		minimum value, local maximum
		value and local minimum value of
		functions
		22.7.2. Finding stationary points,
		application of first derivative test or

ermine
L
ities and
nite
nte
ule and
e
gral,
eorem
ids with
definite
ral
volved
taneous
eration
nd
notion
liers
ed
es of
es of es of

		tendencies and meaning of central
		tendencies
	25.3.Dispersion	25.3.1. Dispersion tendencies (standard
	Tendencies	deviation, variance)
		25.3.2. Advantages and disadvantages of
		dispersion tendencies, influences of
		data conversion on central tndencies
		and meaning of dspersion
		tendencies
		25.3.3. Coefficient of variation
	25.4. Statistical Indices	25.4.1. Meaning of statistical indices and
		composite indices
		25.4.2. Calculation of statistical indices and
		composite indices
26. Probabilities	26.1. Principle of	26.1.1. Meaning of sample space, events
20.110000000000	Addition	and probability
	7 Rudition	26.1.2. Probabilities of mutually exclusive
		events and complementary events,
		and their calculations
	26.2. Principle of	26.2.1. Meaning of independent events and
	Multiplication	its probability calculation
	wintiplication	
		26.2.2. Meaning of dependent events and its
		probability calculations.
		26.2.3. Bayes' Theorem
	26.3. Expectations	26.3.1. Meaning of expected value and its
	A(1 D' ' 1	Calculation
	26.4. Binomial	26.4.1. Meaning of binomial distribution
	Distribution	and its calculation
	26.5. Normal	26.5.1. Meaning of normal distribution and
	Distribution	its application
27.Linear	27.1.Correlation	27.1.1. Two dimensional scatter plot
Regressions	Coefficients	27.1.2. Definition and finding of correlation
		coefficients
		27.1.3. Definition of correlation
	27.2. Simple Linear	27.2.1. Definition of independent variable
	Regression	and dependent variable
	Models	27.2.2. Using simple least squares
		regression to built model
28.	28.1. Differentiation of	28.1.1. Differentiation of implicit functions
Differentiation	Implicit Functions	
and its	28.2. Derivatives of	sin v
Application	Trigonometric	28.2.1. $\lim_{x \to 0} \frac{\sin x}{x}$
(II)	Functions	$x \rightarrow 0 X$
		28.2.2. Derivatives of trigonometric
L	1	

		functions
	28.3. Derivatives of	1
	Logarithmic	28.3.1. The value of $\lim_{x \to 0} (1+x)^{\frac{1}{x}}$
	Functions and	28.3.2. Derivatives of logarithmic functions
	Exponential	and exponential functions
	Functions	
	28.4. Logarithmic	28.4.1. Logarithmic differentiations
	Differentiations	
	28.5. L'Hôpital's Rule	28.5.1. L'Hôpital's Rule $\left(\frac{0}{0}\right)$ indeterminate
		form and $\frac{\infty}{\infty}$ indeterminate form)
	28 6 Convovity	28.6.1. Convexity, inflection point and
	28.6. Convexity,	asymptote of the curves
	Inflection Point	28.6.2. Sketching curves
	and Asymptote	
	of the Curves	
29. Definite and	29.1. Using	29.1.1. Using antiderivative to find
Indefinite	Antiderivative to	integration
Integral (II)	Find Integration	
	29.2. Integration by	29.2.1. Meaning and arithmetic of
	Partial Fraction	integration by partial fraction
		29.2.2. Finding integral by using partial
		fraction
	29.3. Integration of	29.3.1. Integration of sine function and
	Trigonometric	cosine function
	Functions	29.3.2. Integration of sine function and
		cosine function with odd power and
	20.4 T : 1	even power
	29.4. Trigonometrical Substitution	29.4.1. Finding $\sqrt{a^2 - x^2}$, $\sqrt{a^2 + x^2}$,
		$\sqrt{x^2 - a^2}$ by using trigonometrical
		substitution
	29.5 Integration by	29.1.1. Integration by parts
	parts	
30. Differential	30.1. First Order	30.1.1. Properties of first order differential
Equations	Differential	equations
	Equations	30.1.2. Identifying differential equations
	30.2. Separable	30.2.1. Variable separable differential
	Differential	equations and their solution

	Equations	
	30.3. First Order Linear	30.3.1. Solving first order differential
	Differential	equations by using integrating
	Equations	factors
	30.4. Application of	30.4.1. Problems solving of first order
	First Order Linear	linear differential equations
	Differential	
	Equations	
31. Mathematical	31.1. Mathematical	31.1.1. Meaning of mathematical induction
Methods	Induction	and its proof
	31.2. Proof of	31.2.1. Meaning and application of
	Inequality	comparative method
		31.2.2. Meaning of inequality of arithmetic
		and geometric means and their
		applications
	31.3. Proof by	31.3.1. Counterexample proof by
	Contradiction	contradiction
	31.4. Numerical	31.4.1. First order approximation of a
	Methods	function
		31.4.2. Meaning of newton's method and
		application in finding
		approximation of root
		31.4.3. Meaning of trapezoidal method and
		application in finding
		approximation of area
32.	32.1. Transformation of	32.2.1. Meaning of translation and rotation
Transformation of	Axes	of the axis
Axes		32.2.2. Formulas for translation and rotation
		of the axis
33. Conic	33.1. Parametric	33.1.1. Polar coordinates
Sections	Equations	33.1.2. Meaning of polar coordinates
	33.2. Conic Sections	33.2.1. Parabolas, ellipses, hyperbolas
		33.2.2. Definition and finding of focus,
		directrix and eccentricity
	33.3. Parabolas	33.3.1. Standard equation of parabolas
		33.3.2. Geometric properties of parabolas
	33.4. Ellipses	33.4.1. Standard equation of ellipses
	-	33.4.2. Geometric properties of ellipses
	33.5. Hyperbolas	33.5.1. Standard equation of hyperbolas
	••	33.5.2. Geometric properties of hyperbolas
34. Complex	34.1. Complex	34.1.1. Meaning of expansion of number,
Numbers	Numbers	imaginary number, complex number
		and complex conjugate

		34.1.2. Addition and subtraction,
		multiplication and power, and
		division of complex numbers
	34.2. Arguments and	34.2.1. Relationship between complex
	Modulus of	numbers and cartesian cordinate
	Complex Number	system, meaning of complex plane
	in Complex Plane	34.2.2. Representing complex numbers in
		vector form
		34.2.3. Representing complex numbers in
		complex plane
		34.2.4. Meaning and value of modulus of
		complex number and argument
	34.3. Complex	34.3.1. Meaning of trigonometric function
	Numbers in	34.3.2. Multiplication and division of
	Trigonometric	complex numbers in trigonometric
	Functions	functions
		34.3.3. Algebraic expression for complex
		numbers and conversion of
		trigonometric functions
	34.4. De Moivre's	34.4.1. Meaning of De Moivre's Theorem
	Theorem	34.4.2. Problem solvings of De Moivre's
		Theorem
	34.5. Nature of Root	34.5.1. Fundamental Theorem of Algebra
		34.5.2. Conjugate root
35. Vector Space	35.1. Space Rectangular	35.1.1. Coordinates and axes in space
	Coordinate	35.1.2. Distance between two points in
	System	space
	35.2. Geometry of	35.2.1. Addition and subtraction of vector
	Vector Space	space and scalar product in vector
		space
		35.2.2. Magnitude of a vector
		35.2.3. Finding midpoints in space by using
		Midpoint Theorem
	35.3. Inner Products of	35.3.1. Meaning and nature of inner product
	Vectors	35.3.2. Inner product
		35.3.3. Meaning and finding angle between
		two vectors
		35.3.4. The vector projection of one vector
		over another vector
	35.4. Outer Products of	35.4.1. Meaning and nature of outer product
	Vectors	35.4.2. Calculation, size and direction of
		outer products
	35.5. Equations of	35.5.1. Equations of plane in space

Lines and Planes	35.5.2. Equations of line in space
in Space	

7.2 Learning Standards

Students acquire subject knowledge, competencies, attitude, and core values from cognitive, psychomotor, and affective (as indicated in table 5) in learning standards of Advanced Mathematics. The connotations of these domains are further explained in table 6. Table 7-1 and 7-2 are correspondence table mapping examples of content standards and learning standards for reference in lesson plans.

Table 5

Learning Standards

Domain	Cognitive (C)	Psychomotor (P)	Affective (A)
Item	Ca Mathematic Facts	Pa Mathematizing	Aa Learning Confidence
	Cb Mathematic Concepts	Pb Analysing	Ab Motive
	Cc Mathematic Procedures	Pc Problem-solving	Ac Mathematical Disposition
		Pd Communicating	
		Pe Applying Tools	

Table 6

Description of Items in Learning Standards

Domain	Item	Descriptions	
	Ca Mathematical	I. Indicates elementary elements of	
	Element	mathematics, e.g., symbols, graphics and	
		definitions. Students understand and master	
		elements of mathematics and representations.	
Cognitive (C)	Cb Mathematical	I. Indicates relationships between mathematical	
	Knowledge	elements. Students understand mathematical	
		concepts, theorems, and laws.	
	Cc Mathematical	I. Indicates formation procedures and steps of	
	Procedure	mathematical elements and knowledge	
	Pa Mathematize	I. Indicates arithmetic, algorithm, modelling and	
		visualising.	
	Pb Analysing	I. Indicates analysing problems and making	
		reasonable inferences.	
Psychomotor (P)	Pc Problem-solving	I. Indicates applying suitable strategies and	
		solving problems effectively.	
	Pd Communicating	I. Indicates grasping the meaning of information	
		and conveying it to others effectively.	
	Pe Applying Tools	I. Indicates applying tools (e.g., geometric	

		instrument, calculator, and computer) to solve problems.	
	Aa Learning	I. Indicates self-confidence in learning	
	Confidence	mathematics.	
	Ab Motive	I. Indicates putting in effort spontaneously and	
Affective (A)		maintaining initiative in learning	
Allective (A)		mathematics.	
	Ac Mathmatical	I. Indicates the ability to think independently,	
	Disposition	understand the nature and value of	
		mathematics, and apply to one's life.	

Table 7-1

First Example of Alighment of Content Standards and Learning Standards

	Cognitive	Psychomotor	Affective
Learning	CcI	PaI	AaI
Standards	Indicates formation	Indicates ability of	Indicates building
	procedures and steps	arithmetic, algorithm,	self-confidence in
Content	of mathematical	modelling and	students of
Standards	elements and	graphic.	mathematics.
	knowledge		
3.1.2	Understand the	Able to operate the	Perform the
Arithmetic and Synthetic	concept and	arithmetic of	procedure with
Division of Polynomials,	relationship of factors	polynomials.	confidence and
Meaning of Factorization	and multiples.		patience.
and Multiplication in			
Polynomials			

Table 7-2

Second Example of Alignment of Content Standards and Learning Standards

	Cognitive	Psychomotor	Affective
Learning	CcI	PaI	AaI
Standards	Indicates formation	Indicates ability of	Indicates building
	procedures and steps	arithmetic, algorithm,	self-confidence in
Content	of mathematical	modelling and	students of
Standards	elements and	graphic.	mathematics.
	knowledge		
25.2.2	Understand the	Able to make	Curious in various
Advantages and	meaning of central	reasonable inferences	interpretation of
Disadvantages of Central	tendencies	on meaning of central	central tendencies.
Tendencies, Influences of		tendencies.	
Data Conversion on Central			
Tendencies and Meaning of			
Central Tendencies			

8. Pedagogical Suggestions

Recommendations for Advanced Mathematics teaching period allocation are: Senior Middle One and Senior Middle Two 7 periods every week, while Senior Middle Three 5 periods every week. Each period lasts for 40 minutes. The course comprises 35 chapters, the period allocation for each chapter is indicated in table 8. In addition, each chapter can be allocated a flexible 1-5 period for previewing, revision, and implementation of mathematical activities to ensure diverse learning in this course. Teachers may adjust these periods according to the level of learning and progress of teaching.

Table 8

Lev	vel	Chapter	Chapter Name	Period Allocation Recommendation
Senior One A	Middle	1	The Cartesian Coordinate System and Linear Equations	10 - 12
		2	Quadratic Equations	7 - 8
		3	Polynomials	14
		4	Irrational Expression	7
		5	Function	14 - 16
		6	Inequality	16 - 18
		7	Logic	5 - 7
Senior	Middle	8	Angles and Radians	6
One B		9	Trigonometric Functions of Arbitrary Angles	14
		10	Applications of Trigonometry	10
		11	Trigonometric Identities and Trigonometric Equations	18 - 20
		12	Indices and Logarithms	10 - 12
		13	Sequence and Series	20
			Total	151-164
		After incr	easing 1-5 flexible periods in 13 chapters	164-229
Senior	Middle	14	Determinants	6 - 7
Two A		15	Matrices	6 - 7
		16	Circles	16 - 18
		17	Plane Vectors	10 - 12
		18	Solid Geometry	7 - 8
		19	Permutations and Combinations	14
		20	Binomial Theorem	5
Senior	Middle	21	Limits	7
Two B		22	Differentiation and Its Applications (I)	25
		23	Infinite Integrals (I)	8 - 10
		24	Definite Integrals and Its Applications	14
		25	Statistics	14
		26	Probabilities	14

Periods Allocation Recommendation for Advanced Mathematics

	27	Linear Regression	6 - 8
		Total	152-163
	After incr	easing 1-5 flexible periods in 14 chapters	166-233
Senior Middle	28	Differentiation and Its Applications	12 - 14
Three A	29	Definite and Indefinite Integrals(II)	12 - 14
	30	Differential Equations	10 - 12
	31	Mathematical Methods	18 - 20
Senior Middle	32	Transformaiton of Axes	5 - 7
Three B	33	Conic Sections	15 - 20
	34	Complex Numbers	15 - 20
	35	Vector Space	15 - 20
		Total	102 - 127
	110-167		
		Total of three senior level	440-629

"The *Main Standards*" suggests that teachers should cultivate and promote four competencies, as shown (Figure 4). First, technical knowledge is required to increase, e.g., how to apply internet resources, how to operate mathematical software and new platform and how to make learning worksheets.

Second, teaching methods. Orthodox teaching is not "one-size-fits-all", instead "studentcentered learning" is more recognized nowadays. The *Main Standards* emphasizes the competency of exploring knowledge on oneself, thus teachers should adjust learning roadmap, so that students are given more opportunity to explore and apply the knowledge to solve problems.

Third, curriculum concepts. "The *Main Standards*" emphasizes the balanced implementation of "imparting knowledge" and "nurturing students". Thus, teachers should have a grasp of the holistic cultivation concept of the newly implemented "The *Main Standards*", meanwhile have a grasp of core competencies connotations too. Teachers are not merely practitioners of teaching materials, but also creators of teaching activities and programs by fusing the content of teaching materials and competencies.

Lastly, subject knowledge. Teachers need to have a comprehensive understanding of subject matter knowledge. She/ He must clearly understand the subject's purpose, connections across subjects and the world, connection between learning point and holistic knowledge of subject.

Figure 4: Four Competencies in Which Teachers Should Cultivate in Accordance to "the *Main Standards*"

9. Assessment Suggestions

9.1. Assessment is an effective way to examine teaching efforts. Various assessment methods should be applied to examine the learning progress and outcomes of students. Assessment methods include written tests, oral tests, assignments, thematic studies, group presentations, school exams, etc. Modes of assessment should be implemented after the observation of the on-scene requirements of the lesson.

9.2. Teachers should take learning achievement, progress, readiness, and motive of different students into account and analyze whether students have met curriculum requirements before giving assessments. In assessments, complex or demanding questions are inadvisable.

9.3. Appropriate timing is also important when assessments are implemented to avoid students' burdens or inaccurate interpretation of results. For instance, oral responses and homework can be used as reference for teaching plans; classroom tests can be a mean to detect and rectify students' problems timely; thematic studies, group presentation or school exams are valuable feedbacks for measuring and mentoring students' learning progress.

9.4. Assessment aims reflect students' learning progress; thus adequate time and space are compulsory during the assessment. Setting multiple-choice questions should avoid the chances of guesstimates for candidates. Subjective questions should request candidates to write down necessary steps and solutions to examine students' thinking ideas. The scheme must be set for marking subjective questions, while marks should be distributed accordingly to steps. Meanwhile, try to guide students to understand their mistakes and rectify them if possible.

9.5. UEC (Unified Examination Certificate) can be the final evaluation of students learning outcomes. In addition, the results can be reference for their future planning.

9.6. To consider various learning methods, diversified assessments should be implemented. In this way, the assessments are beneficial to student's all-around development. The table below (table 9) indicates the performance standards of cognitive, affective, and psychomotor, expressed at different levels accordingly. Table 10 indicates an example of comprehensive application of content, learning, and performance standards as a reference for writing lesson plans. Besides that, the attached appendix 2 is applicable as a template for performance standards in lesson plans.

Table 9

Domain	Item	Level	Performance Standards
Cognitive (C)	Ca	1 Remember	List and mark out
			mathematics elements.
	Mathematical	2 Understand	Interpret meaning of
	Element		mathematics elements.
		3 Apply	Apply mathematics
			elements.
		4 Analyse	Choose suitable
			mathematics elements
			under different
			circumstances.
		5 Evaluate	Determine the application
			of mathematics elements
			and its reasonableness.
		6 Create	Reorganize mathematics
			elements to form new
			mathematical modal or
			structure.
	Cb Mathematical Knowledge	1 Remember	Describe mathematical
			concept, theorem and
			principle.
		2 Understand	Interpret mathematical
			concept, theorem and
			principle.
		3 Apply	Apply mathematical
			concept, theorem and
			principle.
		4 Analyse	Choose suitable
			mathematical concept,
			theorem and principle
			under different
			circumstances.

Performance Standards

		5 Evaluate	Determine the suitability
		5 Evaluate	of mathematical concept,
			theorem and principle.
		6 Create	Generate activity related to
		0 Cleate	
			mathematical concept,
	<u>C</u>	1 D 1	theorem and principle.
	Cc	1 Remember	Write the steps.
	Mathematical	2 Understand	Understand the sequence
	Procedure		and relationships of the
			steps.
		3 Apply	Apply the steps
			independently.
		4 Analyse	Reorganize, ensure the
			relationship between steps.
		5 Evaluate	Determintae the
			reasonableness of steps.
		6 Create	Generate activity related to
			mathematical procedure.
Psychomotor(P)	Pa	1 Imitation	Imitate others' action.
	Mathana tima	2 Manipulation	Complete mathematical
	Mathematize		task independently.
		3 Precision	Complete mathematical
			task accurately.
		4 Articulation	Complete complicated
			mathematical task
			accurately.
		5 Naturalisation	Complete different
			complicated mathematical
			task independently,
			accurately and skillfully.
	Pb	1 Imitation	Imitate others' action.
	Analysing	2 Manipulation	Understand the main idea
	, ,	1	of the question, graphics
			and make preliminary
			inference independently.
		3 Precision	Grasp the context of the
			question, interpret the
			graphics and make
			reasonable inference.
		4 Articulation	Analyze different question,
			interpret various
			information by interlinking
			new and old knowledge,
			new and old knowledge,

		and males many shifts
		and make reasonable
		inference.
	5 Naturalisation	Analyze different
		questions, make reasonable
		inference and exclude
		unconvincing evidence.
Pc	1 Imitation	Imitate others' actions.
Problem Solving	2 Manipulation	Choose resolution strategy
		independently.
	3 Precision	Choose good strategy to
		solve problem effectively.
	4 Articulation	Choose suitable strategies
		in the light of different
		tasks independently and
		solve the problems
		effectively.
	5 Naturalisation	Choose suitable strategies
		in the light of different
		tasks independently and
		solve the problems
		effectively and skillfully.
Pd	1 Imitation	Imitate others' actions.
Communication	2 Manipulation	Apply mathematical
Communicating	1	diagrams, graphics, etc.
	3 Precision	Apply mathematical
		diagrams, graphics, etc. to
		express opinions.
	4 Articulation	Apply mathematical
		diagrams, graphics, etc. in
		the light of different tasks,
		and explain their
		connotation.
	5 Naturalization	Apply mathematical
		diagrams, graphics, etc. in
		the light of different tasks,
		and explain their
		connotation independently,
		effectively and skillfully.
Pe	1 Imitation	Imitate others ways of
		using mathematical tool.
Applying Tools	2 Manipulation	Use mathematical tools
		independently.

		3 Precision	Use suitable mathematical tools to complete sophisticated tasks.
		4 Articulation	Use mathematical tools to complete different tasks in flexibility.
		5 Naturalization	Use mathematical tools to complete different tasks in accurate and skillful way.
Affective (A)	Aa	1 Receiving	Imitate others' actions.
	Learning Confidence	2 Responding	Apply mathematical diagrams, graphics, etc.
		3 Valuing	Apply mathematical diagrams, graphics, etc. to express opinions.
		4 Organising & Conceptualising	Apply mathematical diagrams, graphics, etc. in the light of different tasks, and explain their connotation.
		5 Characterising by Values	Apply mathematical diagrams, graphics, etc. in the light of different tasks, and explain their connotation independently, effectively and skillfully.
	Ab Motive	1 Receiving	Imitate others ways of using mathematical tool.
		2 Responding	Use mathematical tools independently.
		3 Valuing	Use suitable mathematical tools to complete sophisticated tasks.
		4 Organising & Conceptualising	Use mathematical tools to complete different tasks in flexibility.
		5 Characterising by Values	Use mathematical tools to complete different tasks in accurate and skillful way.
	Ac Mathematical	1 Receiving	Willing to learn mathematics.
	Disposition	2 Responding	Show enthusiasm for learning mathematics.

[3 Valuing	Learn mathematics
		confidently, and recognize
		limitations in her/ his
		learning.
	4 Organising &	Keen on learning
	Conceptualising	mathematics, achieve
		breakthroughs in limitation
		in learning.
	5 Characterising	Keen on learning
	by Values	mathematics, and willing
		to share.

Table 10-1

First Example of Alignment of Content Standards and Learning Standards with Performance Standards

	Cognitive	Psychomotor	Affective
Learning	CcI	PaI	AaI
Standards	Indicates formation	Indicates ability of	Indicates building
	procedures and steps	arithmetic, algorithm,	self-confidence in
Content	of elementary	modelling and graphic.	students of
Standards	elements and		mathematics.
	knowledge		
3.1.2	Understand the	Able to operate the	Perform the
Arithmetic and Synthetic	concept and	arithmetic of	procedure with
Division of Polynomials,	relationship of	polynomials.	confidence and
Meaning of Factorization	factors and		patience.
and Multiplication in	multiples.		
Polynomials			
Performance Standards	Reorganize, ensure	Complete	Keen on learning
	the relationship	mathematical task	mathematics,
	between steps.	accurately. (Pa3)	achieve
	(Ca4)		breakthroughs in
			limitation in
			learning.(Aa4)

Table 10-2

Second Example of Alignment of Content Standards and Learning Standards with Performance Standards

	Cognitive	Psychomotor	Affective
Learning	CcI	PaI	AaI
Standards	Indicates formation	Indicates ability of	Indicates building self-
	procedures and	arithmetic, algorithm,	confidence in students of
Content	steps of elementary	modelling and	mathematics.
Standards	elements and	graphic.	
	knowledge		
25.2.2	Understand	Able to make	Curious in various
Advantages and	meaning of central	reasonable inference	interpretation of central
Disadvantages of	tendencies	on meaning of central	tendencies.
Central Tendencies,		tendencies.	
Influences of Data			
Conversion on Central			
Tendencies and			
Meaning of Central			
Tendencies			
Performance	Interpret	Analyze different	Understand rigourous and
Standards	mathematical	question, interpret	systematic characteristics
	concept, theorem	various information	of mathematics, learn to
	and principle.(Cb2)	by interlinking new	self-reflect and see issues
		and old knowledge,	from different
		and make reasonable	perspectives.(Ac3)
		inference. (Pb4)	

10. Implementation Highlights

10.1. Principles in compiling teaching material

- a. Compilation of teaching material should align closely with basic concepts, core competencies, curricular objectives, and curricular structure of Advanced Mathematics.
- b. Teaching materials include textbooks and teacher manuals. The purpose of the compilation of teaching material is to provide a strong framework to understand the textbook and curriculum, and support teachers in promoting quality education while taking care of students of varying demands.
- c. Learning content must follow the principle of arrangement in which explicit mathematical concepts are shown without overwhelming extra concepts.
- d. The compilation of teaching material should emphasize the overall structure and interlinkage between mathematical concepts. The interdisciplinary approach or integration of daily life material in implementating teaching material are also encouraged.

- e. Teaching material compiled should be demonstrated gradually with appropriate elaboration, various mathematical representations, which stimulate learning interest and strike a balance between intuitive and rigour.
- f. The textbook should provide abundant exercises or tasks to reflect the thinking of students. Teachers can grasp student's learning situation in time via these exercises or tasks, so they can adjust accordingly. These exercises or tasks should focus on the learning theme, and from easy to difficult, excluding meaningless tough and tricky questions.
- g. History and culture of mathematics, mathematicians can be introduced in the textbook to stimulate students' interest in mathematics, foster an aesthetic appreciation for mathematics, and understand the contribution of mathematics to humankind.

10.2. Recommendations on School Equipment

- a. Basic teaching aids: large ruler and compass, sphere modal, geometric frame, transparent three-dimensional modal, three view drawing, etc.
- b. Basic classroom equipment: black board or white board, computer, projector, screen, sound system, etc.
- c. Multimedia room: enough time to travel back and forth between the classroom and the multimedia room.
- d. Mathematical software: geogebra (mobile version, PC version), Desmos, etc.
- e. Q&A: Kahoot (buzzer quiz), Google Form (questionnaire), Slido (anonymous questioning), etc.
- f. Before using the equipments, take note that the following points and make timely adjustment if needed:
 - i. Is the room well-lit? Is there any reflection of light?
 - ii. Is the size of the screen suitable for students' eyesight? Do students sitting at the back of the classroom or corner far away from the screen see it clearly?
 - iii. Is the audio system's volume disrupting neighbouring classes? Or is the volume too low?
 - iv. Is air ventilation proper when the windows and doors are shut?

10.3 Resources

- a. Appropriate use of teaching aids during a lesson in order to foster cognitive visualization and thinking for better teaching effects.
- b. Self-made teaching aids or take materials from readily available ones (e.g., rope, rubber band, bottle cap, pencil case, pen) are prioritized, whilst complicated teaching aids (e.g., large ruler and compass, sphere modal, geometric frame) should be provided by school.
- c. Teachers may integrate electrical equipments (e.g., computer, projector) with mathematics teaching, such as three-view drawings, changes in statistical chart, transformation of a function graph, calculating the volume of solid of revolution by integration, etc.
- d. Teachers may integrate available online resources (e.g., educational YouTube channels, Dong Zong E-Learning, Facebook MICSS mathematics forum, and mathematics anecdotes

from all over the world) to create meaningful teaching. However, classroom teaching cannot be replaced by these resources.

e. A calculator is one of the essential tools for senior level students. Teachers should cultivate a positive attitude towards scientific calculator use in mathematics instruction while enabling them to understand calculators and computerized calculations are not everything. Apart from numerical errors, there is the possibility of input errors, procedural errors and insufficient significant figures, etc. It puts the students in a position whereby calculators are used to performing complicated arithmetic operations or checking algorithms, perceiving the reasonableness of the calculation outcomes and strengthening students' number sense.

11. Appendices

Appendix 1

Cognitive, Affective and Psychomotor Domains

Appendix 2

Template of Perfomance Standards

Chapter :								
Content Standards	Learning Standards		Performance Standards					
	Cognitive (C)	Ca Mathematical Element	1	2	3	4	5	6
		Cb Mathematical Knowledge	1	2	3	4	5	6
		Cc Mathematical Procedure	1	2	3	4	5	6
	Psychomotor (P)	Pa Mathematize	1	2	3	4	5	
		Pb Analysing	1	2	3	4	5	
		Pc Problem Solving	1	2	3	4	5	
		Pd Communicating	1	2	3	4	5	
		Pe Applying Tools	1	2	3	4	5	
	Affective (A)	Aa Learning Confidence	1	2	3	4	5	
		Ab Motive	1	2	3	4	5	
		Ac Mathematical Disposition	1	2	3	4	5	